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Abstract

Most insurance services are currently both inefficient and non-transparent. We propose a way to
solve these issues by implementing a system that provides peer-to-peer insurance. Peers have
mutual control on most aspects of their insurance, such as risk evaluation and processing of
payments. The mutual control is implemented via a voting mechanism that can be delegated to
proxies. To ease the burden of payments between peers, we use Bitcoin as a mean of providing
coverage and payment of reimbursements.

Introduction

Insurance is a service that is currently very non-transparent. Most notably, the reasoning behind
the calculation of premiums is not disclosed and, therefore, cannot be considered intrinsically fair
by customers. For auto insurance in the USA, a typical loss ratio is about 60 percent [1] and
adjustment expenses make up another 10 percent of premiums [2]. Only half of the premiums are
paid back as reimbursements.

Insurance companies and policyholders have conflicting interests. This is reflected in various
bad-faith practices of the companies, such as unreasonable delays, denial of payment, etc.
Though some jurisdictions try to mitigate this by adopting the tort of insurance bad faith, the
general public has a very negative perception of the industry. This, in turn, leads to a high amount
of frauds committed by otherwise law-abiding persons. Surveys show that nearly half the public
would do nothing if they became aware of an instance of insurance fraud [4] and 24 percent even
find such fraud acceptable [3].

Both unfair prices and bad-faith practices can be significantly mitigated by implementing a
peer-to-peer (P2P) insurance organization. Peers control via voting each and every decision and
are free to instantly delegate their votes to other peers, creating chains of trust. As long as there is
no central money-handling party, every reimbursement payment to a peer is, in fact, a payment of
premiums from other peers. Though the total amount of premiums is not fixed, peers have full
control over their spending, which can be two times lower on average.

While for every claim there is still a payee and payer(s), it is in every paying peer’s interest to do
what they believe to be fair. By doing so, the payer sets the standards of treatment that would be
applied to them in case of an incident. This practically removes conflict of interest and significantly
reduces burdens otherwise put on policyholders.

The framework for the P2P organization includes a decision-making layer and a payment layer.
The payment layer is based on Bitcoin technology. The decision-making layer consists of a
server(s) used as a medium for communication and voting.



Teams

Teams are self-governing user communities. A team consists of peers (teammates) that
collectively manage all insurance functions, such as:

- setting of insurance rules (i.e., what is covered, what documents need to be submitted, etc.)

- signing of new members

- appraisal of claims and approval of reimbursements

payment of reimbursements

Teams can be created on the basis of likeness of peers or insured objects:

- kind of insured object (e.g., car, house, health)

- kind of insured incident (e.g., collision, damage to 3rd party)

- social or professional affinity (e.g., World of Warcraft players, McDonald's workers or army
veterans)

- home/work location (e.g., living in same town, working in same office building)

Any person can create a team and define its initial set of rules. Insurance is activated once a
minimal number of peers join the team (two by default) and fund their distributed wallets.

Distributed Wallets

Teammates make reimbursement payments from Bitcoin wallets they control. Private keys to
those wallets are stored on respective client systems only and are never transmitted outside.

Upon first launch, a trusted client application (e.g. an open-source one) creates a key pair (private
key and corresponding public key). The pair is the main key pair for the new teammate’s
distributed wallet. This ensures that no coins can be spent from this wallet without their consent.
The wallet is additionally controlled by N out of M other cosigners selected by the server. The
teammate is allowed to withdraw their coins with the consent of other teammates, i.e., insuring that
all outstanding premiums can be paid out. When the teammate is selected as a cosigner of
another teammate’s wallet, the cosigning is carried out with the same key. The key is also used for
signing requests to the server. Finally, it can be used in case of server-less team disbanding.

The wallets are P2SH ones, with a redeem script using 1 + N out of M signatures. N and M are
selected so that the corresponding redeem transactions are relatively short, yet a sufficiently high
level of security is provided for storing coins in such wallets. For teams with at least 9 active
members, N = 3 and M = 8. An attacker would need to gain control of 4 out of 9 systems at the
same time. (see also: Attack Vector Analysis). For teams with 2—-8 members the N/M values are:
11,112, 1/3, 2/4, 2/5, 2/6, and 3/7.

The server(s) automatically adjusts lists of cosigners by creating new addresses and initiating
transfers of coins to them. This way it handles cases of peers joining or leaving teams. Wallet
owners and cosigners control this process in a way similar to payment of reimbursements: each
change of the address by the server(s) must be approved by both the wallet owner and its
cosigners. (see also: Payment of Reimbursements).



Risk Coefficient

Each newly joining teammate negotiates an insurable value with the team. The insurable value is
usually the price of the insured object or the maximum loss that can be incurred. For some kinds of
insurance (e.g., health insurance) the insurable value can be the same for all teammates and be
defined by the team rules. The insurable value limits the maximum amount of expenses that can
be declared in a single claim by a teammate.

A teammate’s expense expectation is an estimated average value of expenses related to a
potential incident involving the teammate. We define the relation between expense expectation
and insurable value as expense expectation ratio:

EER _ ExpenseExpectation,,,,,mue
teammate InsurableV alue,y,mate

Teammates and their insured objects differ in probabilities of an incident, insurance values, and
expense expectations. To compensate these differences and make insurance fair for each
teammate, we introduce a risk coefficient.
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EER verage is the average EER within the team.

Other things being equal, the higher a teammate’s risk coefficient, the more premiums they would
need to pay.

Example 1:

A team insures against collision damage. An average car is not a new one with a
value of $15,000 and an expense expectation of $3,000. This makes EERerqge = 0.2.
Peter joins the team with a brand new car with insurable value of $30,000. Despite
the higher value of the car, the cost of repair after a potential non-total incident could
be the same as for the team’s average car. Taking into account the possibility of a
total incident, Peter's expense expectation is $4,500, EER, ...~ 0.15. Besides,
Peter's probability of getting into an accident could also be a bit lower:
Pl /P I 4verage = 0.8. Based on that, his risk coefficient could be as low as 0.6.

teammate

A truly fair value of a teammate’s risk coefficient is practically impossible to determine due to
inability to take into account every factor that affects the probability of an incident. A new
teammate’s risk coefficient is initially set via voting by other teammates. When the peer joins the
team, he accepts that the risk coefficient offered by the team can be considered as fair (see also:
Addition of New Members to Team). The coefficient can be changed later according to the team
rules. For example, it may be decreased automatically after one year if the teammate has paid
enough premiums but has not submitted a claim during the year.



For standard types of insurance, the central server(s) estimates a default risk coefficient for each
newly joining person. The estimation is based on data provided by the applicant, publicly known
statistics, and/or team rules.

Peer-To-Peer Coverage

Each teammate is both a provider and a consumer of an insurance service for every member of
the team, including himself. The fairness of such P2P insurance can be achieved by arranging a
symmetric relationship within each pair of teammates. This implies that teammate A's P2P
coverage of teammate B matches teammate B’s P2P coverage of teammate A with respect to the
corresponding risk coefficients:

P2PCoverage p* Risk, = P2P Coverageg ,* Riskp (i)

P2P Coverage, 5 is the maximum amount that teammate A can be reimbursed by teammate B

for a single claim. A teammate’s total amount of P2P coverages by all team members is the
teammate’s coverage limit:

CoverageLimit,= ).~ P2PCoverage, (ii)

B € Team
The coverage limit is the maximum reimbursement that a team is able to pay to a teammate for a

single claim. The coverage limit differs for each team member and is automatically adjusted over
time.

Example 2:

Alice and John are in a team that insures against collision damage. Alice’s car is
valued at $30,000 and John’s one is at $10,000. The team is a big one, so they got
full coverage for their cars.

Both Alice and John have the same risk coefficient of 0.8. Alice’s P2P coverage of
John is 100$, so John’s P2P coverage of Alice is the same, i.e., $100.

If Alice crashes her car, then she would be reimbursed $30,000. From that amount,
she would get $100 from John and $29,900 from other teammates. If John’s car is
destroyed, then he would be reimbursed $10,000 ($100 from Alice and $9,900 from
the rest of the team).

Example 3:

Simon’s risk coefficient is 1.0 and Peter’s is 0.5.
Therefore, if Simon’s P2P coverage of Peter is $100, then Peter’s coverage of John is
$50.



Methods of calculation of P2P coverage are out of the scope of this paper. However, it must be
mentioned that each teammate’s P2P coverage of other teammates is limited by:

a. Amount of coins in the teammate’s distributed wallet

A teammate’s liability never exceeds the amount of coins they control.

b. A preset premium payment limit

It is not possible for a teammate to predict the exact total amount of their premium payments
during a time frame. The way to control spending is by setting a fixed limit for each single
premium payment.

Alternatively or additionally, the team may install a rule to limit premium payments to some part
of each teammate’s wallet. This way it is guaranteed that the team would have some funds to
cover future incidents after a single large claim is reimbursed.

c. Other teammates’ P2P coverage values

According to the fairness rule (i), the maximum that a teammate can be made liable to pay to
another teammate is bound by the other party’s P2P coverage of the teammate.

Example 4:

Adam and Gregory are in a same team and they have the same risk coefficients.
Gregory doesn’t want to pay a fortune if a teammate has in incident, so he sets a
fixed limit of $50 per single premium payment. Now, even though Adam is ok to pay
$200 for an incident of a teammate, he will not pay more than $50 to Gregory.

d. The teammate’s insurable value

If a teammate’s P2P coverage values warrant the coverage limit equal to the insurable value,
then these cannot be increased any further.

Coverage Ratio

When a teammate’s coverage limit is smaller than their insurable value, they are only partially
insured. In the case of an incident, their expenses are to be reimbursed proportionally to the
coverage ratio:

CoverageLimit,, ,mase

Cover ageRathteammate - InsurableV alue,,,,mate

Example 5:

Carol’s insurable value is $10,000. The team is not a big one, so her coverage limit is
only $5,000, i.e. the coverage ratio is 50%. In the case of an insured incident with real
expenses of $2,000, the maximum amount they can be reimbursed would be $1,000
(i.e., $2,000 * 50%).



A teammate’s coverage ratio is visible in the user interface at all times. This allows the teammate
to grasp what reimbursement they can expect in the case of an incident.

Proxy Voting

All decisions within a team are made based on voting results. The weight of a teammate’s vote is
proportional to the total amount of their premium payments for several previous months.

A teammate does not have to formulate an opinion on each and every decision; that is, they can
delegate their vote to other teammates through a proxy voting list. By default, a newly joining
teammate’s list contains her inviter, and vice versa. The list is sorted: if another teammate from the
top of the list casts a vote, then the votes of teammates below are no longer considered. Anytime
during the voting period a teammate can cast their vote and cancel the vote cast by a proxy on the
teammate’s behalf.

In small teams, insurable incidents happen rarely and premium payments per an incident are
relatively large. The motivation to vote in such teams can be substantial. However, in a larger
team, most teammates may find that it does not justify spending time on frequent voting on issues
with almost no financial involvement. To make voting more appealing, the team may set a rule to
pay a sum equivalent to a fraction of reimbursement amount as compensation to those who do
cast a vote:

TotalV oteComp,,,;, = Reimbursement

x V oteCompRatio

A teammate’s compensation for voting is proportional to the total weight of votes that a teammate
casts for themselves and as an effective proxy for other teammates:

VoteWeightr+ WeightProxyUsersy ciqim
W eightSum ’

VoteCompy .., = TotalVoteComp, .~ *

where

W eightSum is the sum of vote weights of all teammates, and

WeightProxyUsersr ..., is the sum of vote weights of teammates that have teammate T as the
effective proxy.

Example 6:

Alice votes as a proxy for Carol. After the voting is finished and the claim is
reimbursed, Alice is paid proportional to the sum of their vote weights.
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Teammates that are trusted by many others in big teams may be paid enough to do this job at
least part-time. Fairness and correctness of their votes directly affect the number of people who
trust them and, in turn, their income from being a proxy. This induces competition and control of
among such pro voters: Any event of an unfairness or a dishonesty of a rival voter would be
promptly reported to the society. In turn, the presence of such control makes the voters do their
best.

Most of the work that pro-voters do is similar that of appraisers, fraud detection analysts, and other
insurance company representatives. They are motivated to obtain licenses for insurance-related
software (fraud-detection, appraisal, etc.). Naturally, a significant proportion of pro-voters can be
freelance insurance professionals or employees of insurance companies interested in new
markets. Pro-voters may have no insured objects at all and, therefore, can be invited to a team
only to perform the voting job.

Claim Submission

When an insured incident occurs to a teammate, they need to notify other team members by
submitting a claim. They discuss the claim and the claim submitter provides information regarding
the accident and the claim. Current voting results and a list of votes cast are available to all team
members at any moment while the voting is on. The voting automatically finishes in several days.
A possible outcome is that the claim submitter has not persuaded other teammates of claim
validity by that time and voting results are not positive for them. In this case, the claimant can
extend the voting period if it is allowed by the team rules.

The workflow for a claiming teammate is presented below:
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The process of estimation of expenses differs for various insured objects, insurance types, and
team rules. For simple cases, such as the loss of a fancy smartphone, it could be just the price of
a new one. For auto insurance claims it could be as follows:
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It may later turn out that some substantial expenses are not included in the total by the claim
submitter, e.g., due to a hidden damage. In such cases, a follow-up claim can be submitted if it is
in compliance with the team rules. Total claimed expenses for a single claim cannot exceed the
teammate’s insurable value.



Voting on Reimbursement

The claim submitter provides estimation of expenses that limits the maximum reimbursement. If
the team set a deductible via the team rules or the claim submitter’s coverage ratio is not 100%,
then the maximum reimbursement is automatically reduced:

MaxReimbursement,,,;,,

= (ExpensesClaimed,,,,, — Deductible) x CoverageRatio

laim claimer

The team may grant any amount from 0% to 100% of the maximum reimbursement. The exact
amount of reimbursement is determined by voting:

M axReimbursement x V otingResult

Reimbursement laim

claim claim

The voting result is calculated as the median value of votes, i.e., the amount of votes cast for
reimbursing more is the same as the amount of votes cast for reimbursing less. Use of the median
value lowers the effect of possible tactical voting in comparison with the mean value.

Example 7:

Simon’s team votes for reimbursement of a claim. Simon believes that it would be fair
to pay 80%, but the current voting result is only 61%. He decides to change his vote
to 100%, but as long as his vote stays on the same side of 61%, the voting result
does not change.

Each teammate’s premium payment is calculated during the voting so that any teammate can see
what his personal payment would be:

claimer, teammate

Reimb y P2PCoverage
etmour. Sementclaim CoverageLimit

PP

teammate, claim claimer

Payments and Withdrawal

Upon closing of voting the server(s) prepares a set of bitcoin transactions from team members’
distributed wallets to the claim submitter’'s pay-to address. Additional transactions may be created
for compensations for voting.

To reduce the amount of Bitcoin transactions’ fees, team rules may allow the server(s) to combine
premium payments of small value. In this case some teammates do not take part in the payment
and others pay more. The server(s) stores the difference between the fair share payment and the
real payment. This difference is taken into account on the next payout so that it never exceeds a
preset amount, e.g., $10.

A wallet owner may initiate a withdrawal transaction. The server(s) approves the transaction if the
remaining funds on the wallet would be sufficient to pay the teammate’s premium payments for all
currently unsettled claims.

Processing of each transaction is carried out as follows:
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The server(s) transmit the outputs of the transaction to the wallet owner and each cosigner of the
wallet.

The client software on the wallet owner’s and the cosigners’ systems allows users to check the
transaction’s outputs and approve the transaction. If the transaction looks suspicious, then a user
may disapprove it. If the user neither approves nor disapproves the transaction within several days
(D1 = 3, D2 = 3 by default), then the client software auto-approves the transaction and notifies the
server.

The client software maintains a list of known pay-to addresses. Payment to new addresses may
be delayed for additional several days (D1 =7, D2 = 7). (See also: Attack Vector Analysis).

When the transaction is approved, the server identifies a set of UTXOs to use as inputs for the
transaction. It then passes this set to all the cosigners. Those cosigners that already approved the
transaction cosign it without additional confirmations from users and transmit the co-signatures to
the server.

The server further transmits the co-signatures along with the set of inputs to the wallet owner’s
client software. Here the transactions gets fully signed and is published in the blockchain via a
pushtx service (https://blockchain.info/pushtx, https://btc.blockr.io/tx/push, etc.).

The server(s) checks the state of the transaction. If after seven days since being cosigned the
transaction is still not published in the blockchain, then the owner of the distributed wallet may be
penalized according to the team rules. To process transactions in a timely manner, each
teammate’s client software should be online at least once every 2-3 days.

Addition of New Members to Team

A team may decide whether an invitation is required for joining the team. It may also determine if
recently joined members are allowed to send out invitations.

A person wanting to join the team needs to submit an application. The application should contain
all the information required by the team rules. For example, for auto insurance, it may be required
to submit a description and photos of the car, information about drivers, previous accidents, etc.
The application must include insurable value if it is not defined in the team rules.

Upon receiving an application, the server(s) initiates voting on the new member’s risk coefficient.
Similar to voting on reimbursement, a median value is selected, l.e. the result is determined in
such a way that the amount of votes cast for risk coefficients lower than the selected one is the
same as for greater ones. During the voting period, teammates may require additional information
from the applicant. The final value of the risk coefficient is determined after the voting is over
(seven days by default). After the applicant approves the risk coefficient he becomes a new team
member.



Team Rules

All aspects of interactions within a team are regulated by team rules. Rules are set by team
members and enacted/maintained by the server(s). Until accepting a second team member to the
team, the creator of the team may alter the rules in any way. In a team of several members, each
change to the rules is a result of voting.

Team rules consist of predefined as well as custom rules suggested by the team members. For
each predefined rule there is a parameter that can be modified. For a custom rule a modification
can be either new text or deletion of the rule.

Voting is carried out automatically on an hourly basis. For a parameter that has several options
(e.g., on/off, yes/no) the new value can be set if it is supported by the majority of teammates’
votes. This also applies to all custom rules. New values of numeric parameters are determined as
median values (i.e., the amount of votes for lower values and for larger values are the same).

Changes to custom rules and parameters with several options go into effect after several days
(seven by default) if no additional changes has been made during that period. For each numeric
parameter a running average with a window of several days (seven by default) is used as the
parameter’s effective value.

Team Disbanding

Members of a team may collectively transfer funds from their distributed wallets with no interaction
with the server(s) at any time. If the server(s) became compromised, then team members would
launch the client software in a special “disband” mode. To speed up the process, they can
coordinate it via a social network or forum.



Wallet Orewner Cosigner

Post Disbanding Post Disbanding
Request to Blockchain Request to Blockchain

L |

Vait for a Wallet
Cwner to post a
Dizbanding Reguest

7

Cosign withdrawal TXs
and post cosignatures
to Blockchain

I

Fetch cosignatures for [There are un
z processed
with dé‘?wﬂ -E(.s from wallets 'm a cosigner of]
lockchain 4 |
-
[elze]

Wait for
coszignatures from N
out of M cosigners

—

Post withdrawal TXs ]

® ®

Initially, the client software publishes a disbanding request to the blockchain. The request is
posted as a payloaded transaction from the teammate’s personal wallet (the one with a P2PKH
address derived from the teammate’s pubkey [5]). The payload contains a pay-to address
specified by the user. Subsequent data exchange uses payloaded transactions in the same way.



Once the request is published, the client software stops processing any requests from the server
related to the team being disbanded.

Withdrawal transactions are ones that transfer coins from the distributed wallets to the pay-to
addresses of the respective wallets’ owners. It might be that the teammate is not a cosigner of any
other teammate’s wallet. In these cases, the client software just waits for co-signatures for
withdrawal transactions to be published in the blockchain by the cosigners. Once it fetches N out
of M (e.g., 3 out of 8) co-signatures, it fully signs the withdrawal transactions and pushes them to
the blockchain.

If the teammate is a cosigner of some wallets, then the client software also awaits disbanding
requests from each cosigned wallet's owner. Once a request is received, it cosigns respective
withdrawal transactions and publishes the co-signatures in the blockchain.

Attack Vectors

Threat actor: compromised/fraudulent server

Threat

Block access to teammates’ funds:

Prevention

Teammates may collectively transfer coins from

a) shut down server;
b) don’t process legitimate requests.

Unauthorized move of coins from a
teammate’s wallet:

create a transaction spending from the
wallet and send it for approval to
teammates.

Threat actor: fraudulent teammate

Threat

Try to take advantage of other
teammates:

In small teams, an attacker might want to
enjoy the insurance until a major accident

is to be reimbursed. Then they would
want to quit the system and get their
money back instead of paying the
premium.

Make a false claim.

distributed wallets.
(See: Team Disbanding.)

The attacker would have to hope that the fraudulent
transaction is unnoticed until it gets auto-approved.
The auto-approval interval is seven days by default for
a new pay-to address and three days for a known
address.

The probability of being unnoticed decays
exponentially with growing of the number of wallets
under attack.

Prevention

The attacker would need to persuade 3 out of 8
cosigners to help him create an out-of-system
withdrawal transaction.

Such cosigners would be flagged and might have
funds on their distributed wallets suspended by their
teammates.

Teammates are not limited with a standard set of
verification procedures and may require any amount
of additional proofs.



Fraud against peers is also much less tolerated than
against “the system”:

10 percent of Americans agree that “insurance fraud
doesn’t hurt anyone” [6].

Refuse to sign (block) a legitimate TX. It would take 6 out of 8 people to conspire to do this.
Optionally: blackmail the wallet owner. In most cases teammates are non-anonymous, e.g.

with known car plates (for auto insurance) and FB
logins. Anyone who tries this anyway, would be at risk
of losing control of their own wallet (cosigned by other
teammates).

Threat actor: non-cooperating teammate

Threat

Refuse to run the client
software, e.g. after
stopping of using the
service (block legitimate
transactions).

Prevention

If a cosigner stops running client software for a long time, then the
system schedules move of coins to another wallet, removing this
person from the cosigners list.

Threat actor: compromised teammate

Threat

Unauthorized move of
coins from the wallet:
create a transaction
spending from the wallet.

Unauthorized move of
coins from the wallet:
a) create a withdrawal
request;

b) make a false claim.

Prevent legitimate use of

Prevention

A distributed wallet is controlled by the wallet’'s main key + 3 out of 8
cosigning keys stored on other teammate’s systems. An attacker
would also need to take control of three different cosigning
teammate systems.

The real wallet owner can disapprove malicious transactions.
They also may use a master key / social network login to block
access from compromised client software.

The real wallet owner may use a master key / social network login to

the wallet by its real owner: block access from compromised client software.

Disapprove legitimate
transactions.



Conclusion

We have proposed a system for peer-to-peer insurance. Users of the system can create or join
teams, where each member is a peer. Each peer is both a provider and a consumer of the
insurance service and each premium payment is, in fact, a part reimbursement of a claim. Peers
collectively administer all functions of their team by voting. To make the voting process efficient we
propose chainable proxy voting, with voters being compensated for their time. To enforce premium
payments we introduced distributed Bitcoin wallets that prevent spending not sanctioned by other
peers. Distributed wallets are not server-controlled and can be transferred from if the server(s) is
compromised.
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